亚洲欧洲偷自拍图片区,91在线精品免费免费播放,伊人色综合久久天天,亚洲日韩在线观看国产精品每日更新,色综合中文字幕,人妻 校园 激情 另类,亚洲AⅤ综合在线欧美一区,99久久精品久久久久久婷婷
+ WeChat number:語言切換+微信彈窗

Your location: Home -> Information dynamic -> Industry News

Recommended Products

Where is the quality control of electronic scale molds reflected

Source:www.takisawa-sh.com      Release date: 2025-10-09
The quality of electronic scale molds directly determines the accuracy, stability, and service life of core components such as the electronic scale shell, tray, and sensor mounting base. Its quality control needs to run through the entire process of "design processing trial mold mass production", focusing on five dimensions: dimensional accuracy, structural stability, material adaptability, surfac
        The quality of electronic scale molds directly determines the accuracy, stability, and service life of core components such as the electronic scale shell, tray, and sensor mounting base. Its quality control needs to run through the entire process of "design processing trial mold mass production", focusing on five dimensions: dimensional accuracy, structural stability, material adaptability, surface quality, and durability. The specific control points are as follows:
1、 Dimensional accuracy control: the core of ensuring the "measurement correctness" of electronic scales
        The core function of an electronic scale is "correct weighing", and the dimensional deviation of its mold components (such as tray support positions, sensor fixing slots, and housing assembly holes) will directly affect the weighing accuracy (usually requiring within ± 0.1mm), which needs to be controlled through the following methods:
1. Tolerance control of key dimensions
        Strict tolerances are set for the "core dimensions that affect measurement": for example, the aperture tolerance of the sensor mounting hole needs to be controlled at H7 level (such as φ 12H7, tolerance range+0.018-0mm) to ensure a tight fit between the sensor and the mold components and avoid weighing data drift caused by gaps; The flatness of the tray support surface should be ≤ 0.05mm/m to prevent measurement errors caused by tray tilting.
        During the processing, a "coordinate measuring instrument" is used for full-size inspection, with a sampling ratio of no less than 5% for each batch, and the focus is on verifying dimensional consistency (such as the size difference between cavities in multi cavity molds should be ≤ 0.02mm).
2. The precision of the fit between the mold cavity and the core
        The shell of electronic scales is mostly a "top and bottom cover buckle structure", and the concentricity between the mold cavity (outer surface of the formed shell) and the core (inner surface of the formed shell) needs to be ensured to be ≤ 0.03mm, and the mold clearance should be ≤ 0.02mm:
        During processing, the position of the mold cavity and core is ensured to correspond through "same reference positioning" (such as using the mold reference surface as a unified reference);
        After the trial mold, check the gap at the buckle of the shell to avoid dust entering or loosening during assembly due to excessive gap, which may affect the stability of the internal circuit of the electronic scale.
2、 Structural stability control: avoid mold deformation and component failure
        Electronic scale molds (especially tray molds and large shell molds) need to withstand long-term injection pressure (usually 10-15 MPa) and temperature cycling (injection temperature 180-250 ℃). Structural stability control can prevent component scrapping caused by mold deformation. Specific points include:
1. Material and heat treatment control of mold steel
        Choose high-strength mold steel: prioritize using S136 (corrosion-resistant, polished) or 718H (high hardness, deformation resistant) for the cavity and core, and use S50C (quenched and tempered to 28-32HRC) for the template to ensure overall rigidity of the mold;
        Key components (such as cavity inserts) need to undergo "vacuum quenching+low-temperature tempering" treatment to achieve a hardness of 45-50HRC, while controlling the quenching deformation (deformation ≤ 0.01mm/100mm) to avoid cavity size deviation.
2. Uniformity of mold cooling system
        Uneven mold temperature during injection molding can cause shrinkage and deformation of electronic scale components (such as the casing), and the cooling system must meet the following requirements:
        The distance between the cooling water circuit and the surface of the mold cavity is uniform (usually 8-12mm), with a water circuit diameter of ≥ 8mm, ensuring that the temperature difference in each area of the mold cavity is ≤ 5 ℃;
        For components with uneven wall thickness (such as sensor mounting bases, which may have a wall thickness of 3-8mm), a "conformal waterway" design is adopted to avoid shrinkage or deformation caused by local overheating.
3. Accuracy of guidance and positioning mechanisms
        The guide column, guide sleeve, and positioning pin of the mold need to ensure high-precision fit to prevent cavity displacement during mold closing:
        The clearance between the guide post and the guide sleeve is ≤ 0.005mm (using H6/g5 transition fit), and the clearance between the positioning pin and the pin hole is ≤ 0.003mm;
        Before each batch of production, check the wear of the guide mechanism. If the wear of the guide column exceeds 0.02mm, replace it in a timely manner to avoid "wrong mold" and component scrap.
3、 Material compatibility control: matching the functional requirements of electronic scale components
        The electronic scale components need to be made of different materials according to the usage scenario (such as ABS/PP for the shell and PC/PA66 for the tray), and the mold needs to be adapted to the material characteristics to avoid quality problems caused by "material mold mismatch". Specific controls include:
1. Compatibility between cavity surface treatment and materials
        For materials that are prone to sticking to molds (such as PVC, containing plasticizers and easy to stick cavities): the surface of the cavity needs to be treated with "chrome plating" (coating thickness 5-10 μ m, hardness ≥ 800HV) to improve surface smoothness (Ra ≤ 0.2 μ m) and prevent component strain during demolding;
        For components that require weather resistance (such as ASA for outdoor electronic scale casings), the mold cavity needs to be polished and passivated to avoid surface impurities affecting the material's aging resistance.
2. Optimization design of gate and runner
       The gate position and runner size need to match the fluidity of the material to avoid defects such as "material shortage" and "bubbles" in electronic scale components:
       Materials with poor fluidity (such as PC): adopt a "large water mouth" design (gate diameter 3-5mm), with a channel cross-sectional area ≥ twice the gate cross-sectional area to ensure that the melt fully fills the mold cavity;
       For "thin-walled components" (such as electronic scale panels with a wall thickness of 1.5-2mm): "hot runner+needle valve gate" is used to reduce gate marks and avoid insufficient filling caused by the cooling of the melt in the channel.
4、 Surface quality control: meet the appearance and usage requirements of electronic scales
       The shell, panel and other components of electronic scales require high surface quality (such as no scratches, shrinkage marks, bubbles), and the mold needs to control the surface quality through the following methods:
1. Polishing accuracy of cavity surface
       The "visible surface" of the electronic scale shell (such as the front panel): The cavity needs to be polished to the "mirror level" (Ra ≤ 0.025 μ m, corresponding to polishing level A3) to avoid surface texture affecting the appearance;
       Non visible surfaces (such as the inner side of the casing): Polish to Ra ≤ 0.8 μ m, balancing cost and assembly smoothness (reducing frictional resistance during component assembly).
2. Defect prevention and detection
       Trial mold stage: Each mold samples and inspects the surface of the components, focusing on checking for "shrinkage marks" (uneven wall thickness), "bubbles" (fusion marks), and "flying edges" (mold clearance). When the defect rate exceeds 1%, the mold needs to be adjusted (such as expanding the gate and optimizing the cooling water circuit);
       Mass production stage: Adopting a "visual inspection system" to automatically identify surface defects (detection accuracy of 0.1mm), replacing manual inspection, and avoiding missed detections (the missed detection rate of manual inspection is about 5%, and visual inspection can be reduced to less than 0.1%).
5、 Durability Control: Extend Mold Life and Mass Production Stability
       Electronic scale molds usually require mass production of 100000 to 500000 molds. Durability control can reduce mold maintenance costs and ensure long-term production quality stability
1. Durability design of vulnerable parts
       The vulnerable parts of the mold, such as the ejector pin, spring, and sprue sleeve, are made of "high-strength materials" (such as SKH51 high-speed steel for the ejector pin and SWOSC-V silicon chromium steel for the spring) and undergo "surface nitriding treatment" (nitride layer thickness of 5-8 μ m, hardness ≥ 900HV) to extend their service life (ejector pin life ≥ 100000 mold cycles, spring life ≥ 50000 mold cycles);
       Design a "quick release structure" with a replacement time for vulnerable parts of ≤ 30 minutes, reducing downtime losses.
2. Mold maintenance and upkeep standards
       Daily maintenance: After each production, clean the surface of the mold cavity with a specialized cleaning agent (such as a mold specific degreaser) to avoid residual slag corroding the mold; Check whether the cooling water circuit is blocked every week to ensure that the water circuit is unobstructed;
       Regular maintenance: For every 10000 molds produced, the molds are "disassembled and inspected", including the wear of the mold cavity, clearance of the guide mechanism, and sealing of the cooling water circuit. At the same time, the mold cavity is "re polished" (when the surface roughness Ra exceeds 0.1 μ m) to restore surface accuracy.
主站蜘蛛池模板: 国产电话自拍伊人| 91视频区| 91在线视频福利| 国产精品成人AⅤ在线一二三四 | 国产精品免费入口视频| 国产激情在线视频| 亚洲成年人片| 婷婷色中文网| 永久免费无码成人网站| 亚洲 欧美 偷自乱 图片| 色综合热无码热国产| 久久综合亚洲鲁鲁九月天 | 永久免费精品视频| 美女无遮挡被啪啪到高潮免费| 精久久久久无码区中文字幕| 2020精品极品国产色在线观看| 国产一区二区三区在线观看视频 | 99视频有精品视频免费观看| 欧美另类图片视频无弹跳第一页| 亚洲欧洲日韩国产综合在线二区| 亚洲国产日韩视频观看| 国产91高跟丝袜| 亚洲欧美日韩久久精品| 国产成年女人特黄特色毛片免| 久久精品女人天堂aaa| 成人另类稀缺在线观看| 在线观看av永久| 国产精品冒白浆免费视频| 婷婷色一区二区三区| 在线a视频免费观看| 男人天堂亚洲天堂| 日韩国产一区二区三区无码| 国产成人午夜福利免费无码r| 欧美日韩国产在线播放| 日韩免费毛片| 国产欧美日本在线观看| 亚洲国产成人麻豆精品| 美女被躁出白浆视频播放| 色婷婷国产精品视频| 欧美啪啪精品| 在线一级毛片| 亚洲午夜综合网| 国产乱子伦无码精品小说| 国产99热| 亚洲国产精品人久久电影| 日韩av手机在线| 国产美女无遮挡免费视频| 国产综合网站| 99精品久久精品| 一级爆乳无码av| 亚洲热线99精品视频| 国产精品粉嫩| 国产激情第一页| 狼友av永久网站免费观看| 欧美第一页在线| 亚洲日韩国产精品综合在线观看| 呦系列视频一区二区三区| 青青青国产免费线在| 国产丰满成熟女性性满足视频| 岛国精品一区免费视频在线观看| 中文字幕乱妇无码AV在线| 3344在线观看无码| 日本高清成本人视频一区| 国产精品极品美女自在线看免费一区二区| 欧美日韩资源| 91亚洲精选| 在线观看无码av免费不卡网站| 国产不卡一级毛片视频| 国产91特黄特色A级毛片| 亚洲成人一区二区| 国产原创演绎剧情有字幕的| 欧美天天干| 九九九精品视频| 四虎影视库国产精品一区| 91国内外精品自在线播放| 在线免费a视频| 欧美特黄一免在线观看| 欧美成人第一页| 伊人福利视频| 精品国产网站| 看看一级毛片| 国产福利观看|